Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

Two diastereomers of (\pm)-cis-2-(3-oxo-1,3,4,5,6,7-hexahydro-isobenzofuran-1-yl)cyclohexanecarboxylic acid

Jacob M. Newman, Hugh W. Thompson and Roger A. Lalancette*

Carl A. Olson Memorial Laboratories, Department of Chemistry, Rutgers University, Newark, NJ 07102, USA
Correspondence e-mail: rogerla!@andromeda.rutgers.edu

Received 14 March 2000
Accepted 14 June 2000
The structures are presented for both diastereomers of the title compound, $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{4}$, produced by base-catalyzed selfcondensation of cyclohexane-cis-1,2-dicarboxylic anhydride in refluxing triethylamine. Equilibration of either diastereomer under the condensation conditions yielded the same 5:3 mixture. In the crystal, one diastereomer, (II), is ordered, while the other, (I), displays both flexional ring disorder and carboxyl disorder; both aggregate as centrosymmetric hydrogen-bonded dimers [for (I), $\mathrm{O} \cdots \mathrm{O}=2.680$ (2) \AA; for (II), $\mathrm{O} \cdots \mathrm{O}=2.635(4) \AA$].

Comment

Our attempts to reproduce a literature synthesis of cis-2acetylcyclohexanecarboxylic acid (Csende \& Szabo, 1994) have led us instead to the previously unreported title compound in yields of up to 65%. The wide melting range and overlapping NMR absorptions of the isolated crystalline product (see Experimental) indicated that this acidic material was a mixture of diastereomers, which we were then able to separate by fractional crystallization. Independent equilibration of both individual diastereomers, (I) and (II), with refluxing triethylamine led to the same mixture, having a ratio of $5: 3$. The predominant lower-melting isomer gave the structure whose asymmetric unit is shown as (I).

Fig. 1 shows that (I) is a decarboxylated dimeric material, with cis stereochemistry derived from the starting anhydride preserved at C8 and C9. Compound (I) is a racemate and for

Figure 1
A view of the asymmetric unit of (I) with the atomic numbering scheme. 'Ghost' bonds are used to distinguish the atoms making up the minor component of the C5-C6 disorder [35 (1)\% occupancy]. Only the major component [69 (3)\% occupancy] of the carboxyl disorder is shown. Ellipsoids are set at 20% probability.
its two enantiomers the stereochemistries at $\mathrm{C} 1, \mathrm{C} 8$ and C 9 are $R S R$ (illustrated) and $S R S$, respectively. Not surprisingly, the cyclohexane ring adopts a conformation in which the carboxyl group occupies an axial bond, with the larger bicyclic system equatorial. A coupled up-down flexional disorder was found for C5 and C6 in the flattened half-chair cyclohexene ring. Fig. 1 shows both components of this disorder, whose occupancies are in the ratio 65:35 (11). Disorder also appears in the carboxyl group, whose $\mathrm{C}-\mathrm{O}$ bond lengths and $\mathrm{C}-\mathrm{C}-\mathrm{O}$ angles are partially averaged, with observed lengths of 1.248 (2) and 1.301 (2) \AA, and angles of 122.4 (2) and $115.2(2)^{\circ}$. The packing of (I) involves centrosymmetric carboxyl dimers centered on the c edge of the chosen cell $[\mathrm{O} \cdots \mathrm{O}=2.680(2) \AA$]; consistent with the observed disorder, partial carboxyl H atoms were found at appropriate positions and refined to a 69:31 (3) occupancy ratio.

An intermolecular contact was found for (I) between O1 and one of the H atoms attached to C 7 of a molecule translationally related in $\mathbf{a}(2.59 \AA)$. This lies within the $<2.7 \AA$ range we often employ for non-bonded $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ packing interactions (Steiner, 1997). Using compiled data for a large number of such contacts, Steiner \& Desiraju (1998) found

Figure 2
A view of the asymmetric unit of (II). Ellipsoids are set at 20% probability.
significant statistical directionality even as far out as $3.0 \AA$ and concluded that these are legitimately viewed as 'weak hydrogen bonds' with a greater contribution to packing forces than simple van der Waals attractions.

Fig. 2 illustrates the asymmetric unit for (II), which displays the same cis stereochemistry at C8 and C9 as does (I), along with the same conformational choice of axial versus equatorial cyclohexane substituents. Hence, the observed equilibration, as expected, has involved epimerization only at C 1 . For the two enantiomers of (II), the stereochemistries at C1, C8 and C9, respectively, are $S S R$ (illustrated) and $R R S$. Compound (II) does not display the flexional disorder seen in (I), and no significant disorder was found in its carboxyl group. The $\mathrm{C}-\mathrm{O}$ bond lengths are 1.231 (5) and 1.315 (5) \AA, with $\mathrm{C}-\mathrm{C}-\mathrm{O}$ angles of 125.3 (4) and $113.8(4)^{\circ}$. Values cited as typical for highly ordered dimeric carboxyls are 1.21 and $1.31 \AA$, and 123 and 112° (Borthwick, 1980).

The packing for (II) involves centrosymmetric carboxyl dimers centered on the b and c edges of the chosen cell $\left[\mathrm{O} \cdots \mathrm{O}=2.635(4) \AA\right.$ and $\left.\mathrm{O}-\mathrm{H} \cdots \mathrm{O}=175^{\circ}\right]$. Close $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ contacts were found to a molecule glide-related in \mathbf{b} for both O1 ($2.60 \AA$ to $\mathrm{H} 7 B$) and $\mathrm{O} 4(2.65 \AA$ to $\mathrm{H} 11 A)$. The observed crystal densities of (I) and (II) are identical to within 0.4%.

Compounds (I) and (II) are diastereomeric with a similarly derived compound, (III), whose X-ray structure has been reported by Bayer et al. (1985). Compound (III), however, has trans stereochemistry in the cyclohexane ring ($R R R+S S S$), resulting from equilibration at $\mathrm{C} 8 / \mathrm{C} 9$. This evidently arose from the experimental temperature employed (up to 433 K), which in our case was controlled at $c a 362 \mathrm{~K}$ by the reflux point of the excess triethylamine used as solvent. Two earlier reports of high-temperature preparations of (III), cited as the seventh reference in the paper by Bayer et al. (1985), present a structure having the double bond misplaced at $\mathrm{C} 8-\mathrm{C} 9$.

Experimental

A mixture of (I) and (II) was obtained in ca 39% yield by refluxing cyclohexane-cis-1,2-dicarboxylic anhydride with malonic acid in triethylamine for 18 h . A reaction without malonic acid subsequently produced a yield of 65%, from which (I), m.p. $444-446 \mathrm{~K}$, and (II), m.p. 472-476 K, were separated by fractional crystallization. The solid-state (KBr) IR spectra of (I) and (II) differ significantly only in the fingerprint region; (I) has $\mathrm{C}=\mathrm{O}$ stretch peaks at 1740 (lactone) and $1703 \mathrm{~cm}^{-1}$ (acid), with a weak absorption at $1674 \mathrm{~cm}^{-1}$, while the corresponding bands for (II) are at 1743, 1699 and $1668 \mathrm{~cm}^{-1}$. The
${ }^{13} \mathrm{C}$ NMR spectra (125.7 MHz , p.p.m.) also differ only slightly: for (I), $\delta 179.9,173.5,162.8,127.4,84.9,42.7,40.3,26.9,24.2,24.0,23.4,22.7$, 21.7, 21.4, 19.9; for (II), $\delta 179.5,173.3,163.4,126.6,84.8,42.7,40.7$, 40.0, 28.4, 25.1, 25.0, 22.1, 21.8, 21.3, 19.9. The ${ }^{1} \mathrm{H}$ NMR spectrum (500 MHz, p.p.m.) for (I) shows: $\delta 9.7(1 \mathrm{H}, b r), 5.07(1 \mathrm{H}, s), 2.90(1 \mathrm{H}$, $q, J=5 \mathrm{~Hz}), 2.15-2.4(4 \mathrm{H}, m), 2.05-2.15(2 \mathrm{H}, m), 1.6-1.9(8 \mathrm{H}, m), c a$ $1.55(1 \mathrm{H}, m)$, ca $1.45(1 \mathrm{H}, m)$, ca $1.30(1 \mathrm{H}, m)$; for (II), peaks are at δ $10.4(1 \mathrm{H}, b r), 5.03(1 \mathrm{H}, d, J=8 \mathrm{~Hz}), 2.96(1 \mathrm{H}, d, J=3.5 \mathrm{~Hz})$, ca 2.36 $(2 \mathrm{H}, b r s), 2.1-2.3(3 \mathrm{H}, m), 2.00(1 \mathrm{H}, q / d, J=12,3.5 \mathrm{~Hz}), 1.75-1.9$ $(4 \mathrm{H}, m), c a 1.72(1 \mathrm{H}, m), 1.5-1.65(5 \mathrm{H}, m), 1.34(1 \mathrm{H}, b r s)$. The diastereomer ratio can be assessed by means of the paired peaks near $\delta 5.05$ and 2.93 p.p.m.

Table 1
Selected geometric parameters $\left({ }^{\circ},{ }^{\circ}\right)$ for (I).

$\mathrm{O} 3-\mathrm{C} 14$	$1.248(2)$	$\mathrm{O} 4-\mathrm{C} 14$	$1.301(2)$
$\mathrm{O} 3-\mathrm{C} 14-\mathrm{C} 9$	$122.41(15)$	$\mathrm{O} 4-\mathrm{C} 14-\mathrm{C} 9$	$115.16(15)$

Table 2
Hydrogen-bonding geometry ($\AA,^{\circ}$) for (I).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O3-H3 $\cdots \mathrm{O}^{\mathrm{i}}$	0.82	1.89	$2.680(2)$	162
C7-H7 $A^{\prime} \cdots 1^{\mathrm{ii}}$	0.96	2.59	$3.385(3)$	140

Symmetry codes: (i) $1-x, 2-y, 1-z$; (ii) $x-1, y, z$.

Compound (I)

Crystal data

$\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{4}$
$M_{r}=264.32$
Triclinic, $P \overline{1}$
$a=6.652(2) \AA$ 。
$b=10.616$ (4) \AA
$c=11.038$ (4) \AA
$\alpha=66.180(10)^{\circ}$
$\beta=88.200(10)^{\circ}$
$\gamma=85.61(2)^{\circ}$ 。
$V=711.0(4) \AA^{3}$

$$
Z=2
$$

$D_{x}=1.235 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 33 reflections
$\theta=3.78-13.34^{\circ}$
$\mu=0.089 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Rectangular prism, colorless
$0.60 \times 0.18 \times 0.16 \mathrm{~mm}$

Data collection

Siemens $P 4$ diffractometer $2 \theta / \theta$ scans
Absorption correction: numerical
(XPREP; Sheldrick, 1997)
$T_{\text {min }}=0.98, T_{\text {max }}=0.99$
4844 measured reflections
2422 independent reflections
1790 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.038$
$w R\left(F^{2}\right)=0.088$
$S=1.01$
2422 reflections
192 parameters
H -atom parameters constrained

Compound (II)

Crystal data

$\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{4}$
$M_{r}=264.32$
Monoclinic, $P 2_{1} / c$
$a=11.372$ (7) \AA
$b=10.467$ (9) A
$c=11.901$ (16) \AA
$\beta=91.11$ (7) ${ }^{\circ}$
$V=1416(2) \AA^{3}$
$Z=4$

Data collection

Siemens $P 4$ diffractometer $2 \theta / \theta$ scans
3242 measured reflections
2498 independent reflections
1151 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.025$
$\theta_{\text {max }}=25^{\circ}$
$D_{x}=1.240 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 41 reflections
$\theta=1.71-16.72^{\circ}$
$\mu=0.089 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Rectangular prism, colorless
$0.50 \times 0.30 \times 0.25 \mathrm{~mm}$

$$
\begin{aligned}
h & =-13 \rightarrow 13 \\
k & =0 \rightarrow 12
\end{aligned}
$$

$R_{\text {int }}=0.034$
$\theta_{\text {max }}=25^{\circ}$
$h=-7 \rightarrow 7$
$k=-11 \rightarrow 11$
$l=0 \rightarrow 13$
3 standard reflections every 97 reflections intensity variation $<1 \%$
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0272 P)^{2}\right.$
$+0.1159 P]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.01$
$\Delta \rho_{\max }=0.14 \mathrm{e}_{\AA^{-3}}^{-3}$
$\Delta \rho_{\min }=-0.12 \mathrm{e}^{-3}$
$l=0 \rightarrow 14$
3 standard reflections every 97 reflections intensity variation $<3.0 \%$

Table 3
Selected geometric parameters ($\mathrm{A}^{\circ}{ }^{\circ}$) for (II).

$\mathrm{O} 3-\mathrm{C} 14$	$1.231(5)$	$\mathrm{O} 4-\mathrm{C} 14$	$1.315(5)$
$\mathrm{O} 3-\mathrm{C} 14-\mathrm{C} 9$	$125.3(4)$	$\mathrm{O} 4-\mathrm{C} 14-\mathrm{C} 9$	$113.8(4)$

Table 4
Hydrogen-bonding geometry $\left({ }^{\circ},{ }^{\circ}\right)$ for (II).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O}^{2}-\mathrm{H} 4 \cdots \mathrm{O}^{\mathrm{i}}$	$1.09(4)$	$1.54(4)$	$2.635(4)$	$175(3)$
$\mathrm{C}^{\mathrm{ii}}-\mathrm{H} 7 B \cdots \mathrm{O}^{1 i}$	0.97	2.60	$3.409(6)$	141
$\mathrm{C}^{\mathrm{H}} 1-\mathrm{H} 11 A \cdots \mathrm{O}^{\mathrm{ii}}$	0.97	2.65	$3.412(6)$	135

Symmetry codes: (i) $2-x, 1-y, 1-z$; (ii) $x, \frac{3}{2}-y, z-\frac{1}{2}$.

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.065$

$$
S=1.09
$$

$$
\begin{aligned}
& \begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0941 P)^{2}\right. \\
&+0.6553 P] \\
& \quad \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.42 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }=-0.32 \mathrm{e}^{-3}
\end{aligned}
\end{aligned}
$$

2498 reflections
175 parameters
H -atom parameters constrained
$0.97 \AA$. For (I), H atoms were generated for the disordered C5' and C^{\prime} positions, as well as for the geometric positions on C 4 and C 7 ; they were also allowed to ride on their respective C atoms at a distance of $0.97 \AA$. For (I), the disordered pair of carboxyl H atoms was also found in electron-density difference maps and allowed to refine in idealized positions $0.82 \AA$ from their respective O atoms with isotropic displacement parameters set at 150% of their respective O atoms; their occupancies were allowed to refine [values 0.69:0.31 (3)]. For (II), the carboxyl H -atom position was allowed to refine and its displacement parameter was held constant at $0.08 \AA^{2}$.

For both compounds, data collection: XSCANS (Siemens, 1996); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: $\operatorname{SHELXTL}$; molecular graphics: $S H E L X T L$; software used to prepare material for publication: SHELXTL.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: FR1276). Services for accessing these data are described at the back of the journal.

References

Bayer, H., Schreyer, M., Gieren, A. \& Lamm, V. (1985). Chem. Ber. 118, 34133418.

Borthwick, P. W. (1980). Acta Cryst. B36, 628-632.
Csende, F. \& Szabo, Z. (1994). J. Chem. Res. (S), pp. 262-263.
Sheldrick, G. M. (1997). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Siemens (1996). XSCANS. Version 2.2. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Steiner, T. (1997). Chem. Commun. pp. 727-734.
Steiner, T. \& Desiraju, G. R. (1998). Chem. Commun. pp. 891-892.

